An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus.

نویسندگان

  • Blake Wiedenheft
  • Jesse Mosolf
  • Deborah Willits
  • Mark Yeager
  • Kelly A Dryden
  • Mark Young
  • Trevor Douglas
چکیده

Evolution of an oxygenic atmosphere required primordial life to accommodate the toxicity associated with reactive oxygen species. We have characterized an archaeal antioxidant from the hyperthermophilic acidophile Sulfolobus solfataricus. The amino acid sequence of this approximately 22-kDa protein shares little sequence similarity with proteins with known function. However, the protein shares high sequence similarity with hypothetical proteins in other archaeal and bacterial genomes. Nine of these hypothetical proteins form a monophyletic cluster within the broad superfamily of ferritin-like diiron-carboxylate proteins. Higher order structural predictions and image reconstructions indicate that the S. solfataricus protein is structurally related to a class of DNA-binding protein from starved cells (Dps). The recombinant protein self assembles into a hollow dodecameric protein cage having tetrahedral symmetry (SsDps). The outer shell diameter is approximately 10 nm, and the interior diameter is approximately 5 nm. Dps proteins have been shown to protect nucleic acids by physically shielding DNA against oxidative damage and by consuming constituents involved in Fenton chemistry. In vitro, the assembled archaeal protein efficiently uses H2O2 to oxidize Fe(II) to Fe(III) and stores the oxide as a mineral core on the interior surface of the protein cage. The ssdps gene is up-regulated in S. solfataricus cultures grown in iron-depleted media and upon H2O2 stress, but is not induced by other stresses. SsDps-mediated reduction of hydrogen peroxide and possible DNA-binding capabilities of this archaeal Dps protein are mechanisms by which S. solfataricus mitigates oxidative damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ss-LrpB, a novel transcriptional regulator from Sulfolobus solfataricus

Although Archaea are true prokaryotes, transcription in these organisms resembles the eukaryotic process very closely. On the other hand, many transcription regulators appear to be Bacteria-like. How do these regulators function? This question remains largely unanswered, since information on archaeal transcription regulation is scarce. Many characterized archaeal species are extremophiles, incl...

متن کامل

Molecular Characterization of the a-Glucosidase Gene (malA) from the Hyperthermophilic Archaeon Sulfolobus solfataricus

Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble a-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an a-glucosidas...

متن کامل

Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus.

Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble alpha-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an alpha-gl...

متن کامل

(S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids.

The core structure of membrane lipids of archaea have some unique properties that permit archaea to be distinguished from the others, i.e. bacteria and eukaryotes. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase, which catalyzes the transfer of a geranylgeranyl group from geranylgeranyl diphosphate to (S)-3-O-geranylgeranylglyceryl phosphate, is involved in the biosynthesis of archaeal m...

متن کامل

3-hydroxy-3-methylglutaryl coenzyme A reductase of Sulfolobus solfataricus: DNA sequence, phylogeny, expression in Escherichia coli of the hmgA gene, and purification and kinetic characterization of the gene product.

The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences sug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 30  شماره 

صفحات  -

تاریخ انتشار 2005